
8.9. Графические задачи

8.9.1. На рисунке 8.9.1, $a-\partial$ точки 1 и 2 соответствуют термодинамическим состояниям одной и той же массы газа. Каково отношение давлений, объемов и температур в этих состояниях?

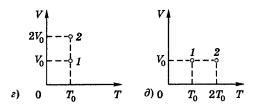


Рис. 8.9.1

- **8.9.2.** Изобразите на p-T- и V-T-диаграммах процесс, проводимый с идеальным газом (рис. 8.9.2). Во сколько раз температура газа в состоянии 4 больше температуры в состоянии 1?
- **8.9.3.** Изобразите на p-V- и V-T-диаграммах процесс, проводимый с идеальным газом (рис. 8.9.3). Найдите температуру газа в состоянии 4. В каком состоянии, 2 или 4, объем больше и во сколько раз?

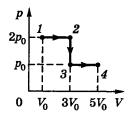


Рис. 8.9.2

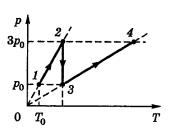


Рис. 8.9.3

- **8.9.4.** С идеальным газом осуществляют цикл, приведенный на рисунке 8.9.4. Изобразите этот цикл в координатах p-V, p-T.
- **8.9.5.** На рисунке 8.9.5 дана диаграмма цикла, совершаемого идеальным газом, в координатах p-V. Изобразите диаграмму цикла в координатах p-T и V-T.

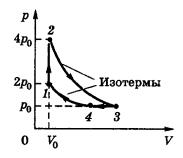
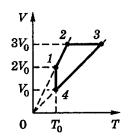
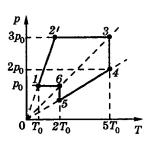




Рис. 8.9.4

Рис. 8.9.5

- **8.9.6.** На рисунке 8.9.6 дана диаграмма цикла, совершаемого идеальным газом, в координатах V-T. Изобразите диаграмму этого цикла в координатах p-V. Найдите отношение наибольшего объема газа в этом цикле к наименьшему.
- **8.9.7**. На рисунке 8.9.7 дана диаграмма цикла, совершаемого идеальным газом, в координатах p-T. Изобразите диаграмму этого цикла в координатах p-V. Найдите отношение наибольшего объема газа в этом цикле к наименьшему.
- **8.9.8.** Один моль идеального газа расширяется так, что его давление изменяется по закону $p=\alpha V$, где $\alpha=2\cdot 10^7~\Pi a/m^3$. Изобразите на p-V-, p-T- и V-T-диаграммах этот процесс, если температура газа изменилась от $T_1=200~\mathrm{K}$ до $T_2=500~\mathrm{K}$.
- **8.9.9.** Один моль идеального газа расширяется так, что его давление изменяется по закону $p=\frac{\alpha}{T}$, где $\alpha=10^7~\mathrm{\Pi a\cdot K}$. Постройте графики этого процесса на p-V-, p-T- и V-T-диаграммах, если объем газа изменяется от $V_1=10$ л до $V_2=40$ л.
- **8.9.10.** Два моля идеального газа сжимают так, что объем газа изменяется по закону $V=\alpha T^2$, где $\alpha=2\cdot 10^{-7}\,\mathrm{m}^3/\mathrm{K}^2$. Изобразите этот процесс на p-V-, p-T- и V-T-диаграммах, если давление газа изменяется от $p_1=100\,\mathrm{k\Pi a}$ до $p_2=400\,\mathrm{k\Pi a}$.

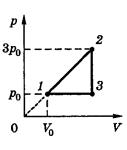


Рис. 8.9.6

Рис. 8.9.7

Рис. 8.9.8

- **8.9.11.** Идеальный газ совершает цикл, график которого показан на рисунке 8.9.8. Постройте график этого процесса в координатах p-T. Определите отношение наибольшей и наименьшей температур в этом процессе.
- **8.9.12.** Идеальный газ совершает цикл, график которого показан на рисунке 8.9.9. Найдите температуру газа в состоянии T_3 . Постройте график этого процесса в координатах p-V.

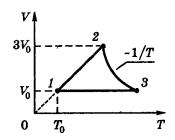


Рис. 8.9.9

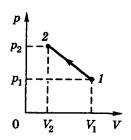
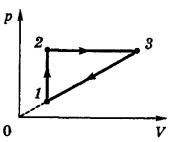



Рис. 8.9.10

- 8.9.13. Гелий массой m=20 г бесконечно медленно переводят из состояния 1 (объем $V_1=32$ л и давление $p_1=4,1\cdot 10^5$ Па) в состояние 2 ($V_2=9$ л и $p_2=15,5\cdot 10^5$ Па). Какой наибольшей температуры достигнет газ в этом процессе, если зависимость давления от объема линейная (рис. 8.9.10)?
- **8.9.14.** Идеальный газ совершает циклический процесс 1–2–3, представленный на рисунке 8.9.11. Температуры газа в состояниях 1 и 3

равны соответственно $T_1=300~{\rm K}$ и $T_3=400~{\rm K}$. Чему равна температура газа в состоянии 2?

• 8.9.15. Один моль газа участвует в процессе, график которого изображен на p-V-диаграмме (рис. 8.9.12). Участки 4-1 и 2-3 — изотермы. Найдите объем V_3 , если известны объемы $V_1=2$ л, $V_2=V_4=3$ л.

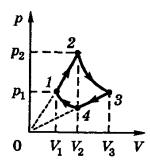
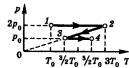


Рис. 8.9.12

Ответы:

8.9.1. См. в условии рис.
$$8.9.1$$
, $a-\partial$:

a)
$$\frac{V_2}{V_1} = 2$$
, $p_1 = p_2 = p_0$, $\frac{T_2}{T_1} = 2$;


6)
$$p_1 = p_2 = p_0$$
, $\frac{V_2}{V_1} = 2$, $\frac{T_2}{T_1} = 2$;

B)
$$\frac{p_2}{p_1} = 2$$
, $\frac{V_2}{V_1} = \frac{1}{2}$, $T_2 = T_1 = T_0$;

r)
$$\frac{p_2}{p_1} = \frac{1}{2}$$
, $\frac{V_2}{V_1} = 2$, $T_2 = T_1 = T_0$;

д)
$$\frac{p_2}{p_1} = 2$$
, $V_1 = V_2 = V_0$, $\frac{T_2}{T_1} = 2$.

8.9.2. Puc. 19,
$$a$$
, δ ; $\frac{T_4}{T_1} = \frac{5}{2}$.

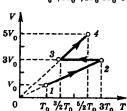


Рис. 19

8.9.3. Phc. 20,
$$a$$
, σ ; $T_4 = 9T_0$; $\frac{V_4}{V_0} = 3$.

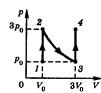


Рис. 20

8.9.4. Рис. 21, а, б.

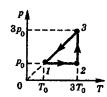
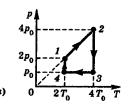



Рис. 21

8.9.5. Рис. 22, а, б.

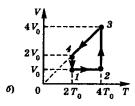


Рис. 22

8.9.6. Puc. 23; $\frac{V_{\text{max}}}{V_{\text{min}}} = 3$.

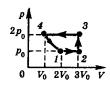


Рис. 23

8.9.7. Prc. 24;
$$\frac{V_{\text{max}}}{V_{\text{min}}} = 2.5$$
.

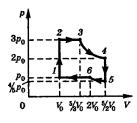
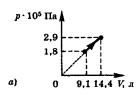
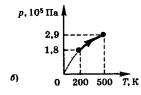




Рис. 24

8.9.8. Puc. 25, a, δ , s; a) $p = \alpha V$ прямая; б) $p^2 = \alpha RT$ — парабола; в) $V^2 = \frac{RT}{\alpha}$ — парабола.

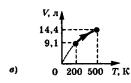
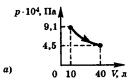
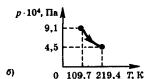
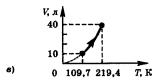
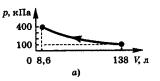
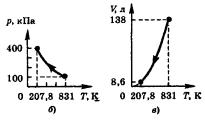





Рис. 25

8.9.9. Puc. 26, a, δ , s; a) $p = \sqrt{\frac{\alpha R}{V}}$ гипербола; б) $p = \frac{\alpha}{r}$ — гипербола; в) $V = \frac{RT^2}{\alpha}$ — парабола.





8.9.10. Puc. 27, a, b, a; a) p = $=\frac{2R}{\sqrt{\alpha V}}$ — гипербола; 6) $p=\frac{2R}{\alpha T}$ гипербола; в) $V = \alpha T^2$ — парабола.

Рис. 26

Puc. 27

8.9.11. Puc. 28;
$$\frac{T_{\text{max}}}{T_{\text{min}}} = 9$$
.

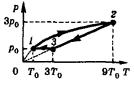


Рис. 28

8.9.12. Puc. 29; $T_3 = 9T_0$.

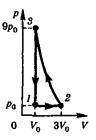


Рис. 29

8.9.13.
$$T = \frac{Mp_0V_0}{mR} = 481 \text{ K}.$$

8.9.14.
$$T_2 = \sqrt{T_1 T_3} \approx 346 \text{ K}.$$