Оценочный лист

Ogeno india sinci			балл
Задача	1.	6 B	2
1	2.	10,8	4
	3.	U = 12 - 0.24t	4
		всего	10
Задача 2	Описано движение катера на тот берег	$ \begin{array}{c c} L \\ \hline \vec{v} \\ \hline \vec{u} \\ vt_1 = D, ut_1 = L \end{array} $	2
	Описано движение катера обратно	$v_{x} = ut_{1}/t_{2} + u$ $v_{y} = vt_{1}/t_{2}; v^{2} = v_{x}^{2} + v_{y}^{2}$ $t_{1} = (v^{2} - u^{2})t_{2}/(v^{2} + u^{2})$	4
	Получена формула	$t_1 = (v^2 - u^2)t_2/(v^2 + u^2)$	3
	Найдено время	45 c	1
		всего	10
Задача	Показана зависимость	$c = c_0 + \alpha t$	2
3	Найдена $\langle c_1 \rangle$	$2,3c_0$	2
	Найдена $\langle c_2 angle$	$2c_0 - \Delta t/20$	2
	Получено квадратное уравнение	$\Delta t^2 - 40\Delta t + 69 = 0$	2
	Найдена Δt	1,8 °C	2
		всего	10
Задача	Записано	$F_{\pi} = \pi \rho g R^3$	2
4	Объем полусферы	$V = \frac{2}{3}\pi R^3$	1
	Сила тяжести действующая	2 2	
	на воду	$m_{_{\theta}}g = \rho - \pi R^{*}g$	2
	на воду Записано условие	$m_{e}g = \rho \frac{\pi R^{3}g}{3}$ $\pi \rho g R^{3} = \rho \frac{2}{3} \pi R^{3}g + mg$	2 2
	<u> </u>	$F_{A} = \pi \rho g R^{3}$ $V = \frac{2}{3} \pi R^{3}$ $m_{e}g = \rho \frac{2}{3} \pi R^{3}g$ $\pi \rho g R^{3} = \rho \frac{2}{3} \pi R^{3}g + mg$ $R = \sqrt[3]{\frac{3m}{\pi \rho}}$	
	Записано условие Полученая формула	$m_{e}g = \rho \frac{\pi}{3}\pi R^{3}g$ $\pi \rho g R^{3} = \rho \frac{2}{3}\pi R^{3}g + mg$ $R = \sqrt[3]{\frac{3m}{\pi \rho}}$ $R = 4 \text{ cm}$	2
	Записано условие	$R = \sqrt[3]{\frac{3m}{\pi\rho}}$	2