Код работы	

Таблица результатов

	Задача	Σ_{max}	Балл жюри	Апелляция	Результат	Подпись
10-1.	«Удачный бросок»	10				
10-2.	«Массовые отношения»	10				
10-3.	«Уголок Пифагора»	10				
10-4.	«Подвижное изображение»	10				
10-5.	«Смешение газов»	10				
Σ_{max}		50	Σ:			

Схемы оценивания

Содержание		Оценки жюри	
Задача 1. «Опаздывайте с умом!» (10 баллов)	Задача 1. «Опаздывайте с умом!» (10 баллов)		
Записан закон (1) сложения скоростей для движения камешка относительно берега $\vec{v}_3 = \vec{v}_1 + \vec{v}_2.$	1		
Указано, что для прямолинейности траектории камешка относительно берега вектор \vec{v}_3 должен быть вертикален.	2		
Из треугольника скоростей найдено значение (2)			
$v_3 = \sqrt{v_2^2 - v_1^2}.$	2		
Получено (3) для времени движения камешка $t = \frac{2v_3}{\mathrm{g}} = \frac{2\sqrt{v_2^2 - v_1^2}}{\mathrm{g}}.$	2		
Найдена правильная окончательная формула (4) для длины катера $l=v_1t=\frac{^2v_1\sqrt{v_2^2-v_1^2}}{\mathrm{g}}.$	2		
Правильно проведены расчет (5) и округление результата (до трёх значащих цифр) $l = \left(\frac{2 \cdot 5,00 \cdot \sqrt{15,0^2 - 5,00^2}}{9,81}\right) \text{м} = 14,4 \text{ м}.$	1		
Всего за задачу:	10	Σ:	

Содержание	Баллы	Оценки жюри
Задача 2. «Массовые отношения» (10 баллов)	
Выполнен рисунок с необходимыми обозначениями, правильно	2	
нарисованы все силы.	2	
Записан второй закон Ньютона (3) – (4) для дальнего шарика		
$m_2 g = T_2 \cos \beta$,	0,75+0,75	
$m_2 a_2 = m_2 \omega^2 r_2 = T_2 \sin \beta \ .$	0,75+0,75	
Записан второй закон Ньютона (5) – (6) для ближнего шарика		
$m_1 g = T_1 \cos \alpha - T_2 \cos \beta,$	0,75+0,75	
$m_1 a_1 = m_1 \omega^2 r_1 = T_1 \sin \alpha - T_2 \sin \beta$.	0,75-0,75	
Найдена сила натяжения (7) нижней нити		
$T_2 = \frac{m_2 g}{\cos \beta}$.	1	
$\cos \beta$.	1	
П (0)		
Получена сила натяжения (8) верхней нити $\binom{m_1+m_2}{2}$		
$T_1 = \frac{(m_1 + m_2)g}{\cos \alpha}.$	1	
cosu		
Выведено (9) для отношения сил		
$\eta = \frac{T_1}{T_2} = \frac{(m_1 + m_2)}{m_2} \cdot \frac{\cos \beta}{\cos \alpha} = (n+1) \frac{\cos \beta}{\cos \alpha}.$	1	
T_2 m_2 $\cos \alpha$ $(n+1)\cos \alpha$	1	
H (10)		
Получено выражение (10) для отношения масс шариков		
$n = \eta \frac{\cos \alpha}{\cos \beta} - 1.$	1	
Из рисунка найдены необходимые параметры (11)		
$\cos \alpha = \frac{2a}{\sqrt{5}a} = \frac{2}{\sqrt{5}}; \cos \beta = \frac{2a}{\sqrt{13}a} = \frac{2}{\sqrt{13}}.$	0,5+0,5	
$\cos a = \frac{1}{\sqrt{5}a} = \frac{1}{\sqrt{5}}, \cos \beta = \frac{1}{\sqrt{13}a} = \frac{1}{\sqrt{13}}.$		
Проведен расчёт с необходимой точностью (до трёх значащих		
цифр)	1	
$n = 5.58 \sqrt{\frac{13}{5}} - 1 = 8.00.$	1	
$\sqrt{5}$		
Daama na na waxay	10	₹.
Beero 3a 3agayy:	10	Σ:
Задача 3. «Уголок Пифагора» (10 баллов) Четко сформулирована идея метода: вычисление работы как		
разность механических энергий шарика в конечном и начальном	1	
	1	
Положении.		
Записано равенство (1) для начальной потенциальной энергии $F^{\Pi} = F^{\Pi} = mal$	1	
$E_1^{\Pi}=E_B^{\Pi}=m\mathrm{g}l.$	1	
X7		
Указано, что в конечном состоянии шарики находятся на одном		
уровне, найдено (2) для потенциальной энергии системы в этом		
состоянии	1+1	
$E_2^{\Pi} = 2mgl\left(1 - \frac{1}{\sqrt{2}}\right).$		
\ \V2/		
	<u> </u>	

Содержание	Баллы	Оценки жюри
Правильно записан закон сохранения энергии (3) для системы в		
конечном положении		
$2\frac{mv_{max}^2}{2} + 2mgl\left(1 - \frac{1}{\sqrt{2}}\right) = mgl.$	2	
Правильно определена максимальная скорость (4) шариков в		
конечном положении		
$v_{max} = \sqrt{(\sqrt{2} - 1)gl} .$	1	
Получено верное выражение (5) для искомой работы $A_{\mathcal{C}}$		
$A_C = \frac{mv_{max}^2}{2} + mgl\left(1 - \frac{1}{\sqrt{2}}\right) = \frac{mgl}{2}.$		
Проведен расчёт с необходимой точностью (до трёх значащих		
цифр)	1	
$A_C = 0,206$ Дж $= 206$ мДж.		
Всего за задачу:	10	Σ:
Задача 4. «Подвижное изображение» (10 балло	в)	ı
Правильно выполнен чертеж.	1	
Записана формула тонкой линзы (1).	1	
найдено расстояние (2) до изображения		
$f = \frac{dF}{d-F} = 2.5 F.$	1	
Рассмотрено малое смещение жуков и определены их скорости (3) $v = \frac{\Delta d}{\Delta t} \;, \qquad u = \frac{\Delta f}{\Delta t}.$	0,5+0,5	
записана формула линзы (4) для малого смещения		
$\frac{1}{d-\Lambda d} + \frac{1}{f+\Lambda f} = \frac{1}{F}.$	1	
Использована математическая подсказка из условия, приведены		
разложения (5) и (6) $\frac{1}{d-\Delta d} = \frac{1}{d} + \frac{\Delta d}{d^2},$ $\frac{1}{f+\Delta f} = \frac{1}{f} - \frac{\Delta f}{f^2},$	0,5+0,5	
Получено (8) $\frac{\Delta d}{d^2} = \frac{\Delta f}{f^2}.$	2	
Получено явное выражение (10) для скорости изображения жучка $u = \frac{F^2}{(d-F)^2} v.$	1	
(" -)		
Проведен расчёт с необходимой точностью (до двух значащих		
цифр)		
u = 9.0 cm/c		
Всего за задачу:	10	Σ:
Задача 5. «Смешение газов» (10 баллов)		
Записано уравнение теплового баланса $(1) - (3)$ для состояния теплового равновесия системы	2	
$egin{aligned} Q^{ee} &= Q^{ee}, \ Q^{ee} &= c m_1 (t^* - t_1), \ Q^{ee} &= c m_2 (t_2 - t^*). \end{aligned}$	2	
$Q = c_{11}c_{2}(c_{2}-c_{1}).$		1

Содержание	Баллы	Оценки жюри
Получено (4) для равновесной температуры системы $t^* = \frac{cm_1t_1 + cm_2t_2}{cm_1 + cm_2} = \frac{m_1t_1 + m_2t_2}{m_1 + m_2}.$	2	
Записаны уравнения состояния идеального газа (5) для каждого из сосудов $p_1V_1=\frac{m_1}{M}RT_1\\p_2V_2=\frac{m_2}{M}RT_2^{\ .}$	0,5+0,5	
Найдены массы (6) идеальных газов в каждом из сосудов $m_1 = \frac{p_1 V_1}{T_1} \frac{M}{R}$ $m_2 = \frac{p_2 V_2}{T_2} \frac{M}{R}$	0,5+0,5	
Получено выражение (7) для равновесной температуры системы (по любой шкале) $t^* = \frac{p_1 V_1 T_2 t_1 + p_2 V_2 T_1 t_2}{p_1 V_1 T_2 + p_2 V_2 T_1}.$	2	
Правильно проведены расчет и округление результата (до двух значащих цифр) $t^* = 98^{\circ}\text{C} = 371 \text{ K}.$	1	
Использовано уравнение Клапейрона-Менделеева (9) для нахождения конечного давления в системе $p^* = \frac{p_1 V_1 + p_2 V_2}{V_1 + V_2} = 2,6 \cdot 10^5 \; \Pi a = 0,26 \text{М} \Pi a.$	1	
Всего за задачу: Суммарный балл за все задачи:	10 50	Σ: Σ: