9 класс

Код ј	работы	

Таблица результатов

	Задача	Σ_{max}	Балл жюри	Апелляция	Результат	Подпись
9-1.	«Опаздывайте с умом!»	10				
9-2.	«Гибкая траектория»	10				
9-3.	«Круговое сопротивление»	10				
9-4.	«Горячая насадка»	10				
9-5.	«Оптические гонки»	10				
	Σ_{max}	50	Σ :			

Схемы оценивания

Содержание	Баллы	Оценки жюри		
Задача 1. «Опаздывайте с умом!» (10 баллов)				
Указано (1), что скорость электрички к моменту появления пассажира ($v_0=0$) $v=at_3.$	1			
Записано (2) для движения предпоследнего вагона $l = v_0 t_1 + \frac{a t_1^2}{2}.$				
Правильно найдено (4) для последнего вагона $2l = v_0(t_1 + t_2) + \frac{a(t_1 + t_2)^2}{2}.$	2			
Из системы уравнений получены условия (5) и (6) для отношения $\frac{v_0}{a} = \frac{(t_1 + t_2)^2 - 2t_1^2}{2(t_1 - t_2)} = \frac{t_2^2 + 2t_1t_2 - t_1^2}{2(t_1 - t_2)}.$				
Выведена формула (7) для времени опоздания пассажира $t_3 = \frac{v_0}{a} = \frac{(t_1 + t_2)^2 - 2t_1^2}{2(t_1 - t_2)} = \frac{t_2^2 + 2t_1t_2 - t_1^2}{2(t_1 - t_2)} .$				
Правильно проведены расчет и округление результата (до двух значащих цифр) $t_3 = \frac{(6,6+4,4)^2-2\cdot 6,6^2}{2\cdot (6,6-4,4)}(c) = 7,7 \ c$	1			
Всего за задачу:	10	Σ:		

Содержание	Баллы	Оценки жюри		
Задача 2. «Гибкая траектория» (10 баллов)				
Записан закон (1) сложения скоростей для движения камешка относительно берега $\vec{v}_3 = \vec{v}_1 + \vec{v}_2.$	2			
Указано, что для прямолинейности траектории камешка относительно берега вектор \vec{v}_3 должен быть вертикален.	2			
Из треугольника скоростей получено выражение (2) $v_3 = \sqrt{v_2^2 - v_1^2}.$	2			
Получена правильная формула (3) для угла бросания камешка $\cos\alpha = \frac{v_1}{v_2} \implies \alpha = \arccos\left(\frac{v_1}{v_2}\right).$	1+1			
Правильно проведены расчет и округление результата (до двух значащих цифр) $\alpha = \arccos\left(\frac{5,0}{15}\right) = 71^{\circ}.$	2			
Всего за задачу:	10	Σ:		
Задача 3. «Круговое сопротивление» (10 баллов		1		
Указана зависимость сопротивления R_0 однородной проволоки от длины l_0 и площади S её поперечного сечения $R_0 = \rho \frac{l_0}{S}.$	1			
Отмечено, что при разрезании длина проволоки не меняется, правильно записано (3) для нахождения радиуса r $l_0 = 2\pi r + 2\pi r + 2\pi (2r) = 8\pi r \implies r = \frac{l_0}{8\pi}.$	2			
Правильно найдено (4) для сопротивлений участков цепи $R_{ACB} = \frac{\pi(2r)}{l_0} R_0 = \frac{R_0}{4}$ $R_{ADF} = \frac{\pi(r)}{l_0} R_0 = \frac{R_0}{8}$				
Правильно представлена схема эквивалентной цепи. $ \frac{R_0/4}{R_0/8} = \frac{R_0/4}{R_0/8} $	2			
Правильно найдено (5) сопротивление представленной цепи $R_{AB} = \frac{R_0}{16}.$	2			
Правильно проведены расчет и округление результата (до двух значащих цифр) $R_{AB} = 1,0 \; \mathrm{Om}.$	1			
Всего за задачу:	10	Σ:		

Содержание	Баллы	Оценки жюри
Задача 4. «Горячая насадка» (10 баллов)		, ,
Указано, что в данном случае работает явление теплового	1	
расширения (сжатия) тел.	1	
Правильно найдены массы (1) и (2) цилиндра и вала		
$m_1 = \rho(\pi R^2 - \pi r^2)l,$	1 + 1	
$m_2 = \rho \pi r^2 l$.	1+1	
- '		
Записано уравнение теплового баланса в любом виде (3) – (5)		
$0^{\checkmark}=0^{?}$		
$Q^{\checkmark}=cm_2(t^*-t_2),$	1+1+1	
$O^{\gamma} = cm_1(t_1 - t^*).$	1 1 1 1	
$q = cm_1(t_1 - t_1)$.		
Получено правильное выражение (6) для равновесной температуры		
СИСТЕМЫ $cm_1t_1+cm_2t_2 m_1t_1+m_2t_2$	2	
$t^* = rac{cm_1t_1 + cm_2t_2}{cm_1 + cm_2} = rac{m_1t_1 + m_2t_2}{m_1 + m_2}.$	_	
1 2 1 2		
Окончательный ответ преобразован к виду (7)		
$t^* = \frac{\binom{R^2 - r^2}{t_1 + r^2 t_2}}{\binom{R^2}{t_2}} = t_1 - \frac{(t_1 - t_2) r^2}{\binom{R^2}{t_2}}.$	1	
$t = \frac{1}{R^2} = t_1 - \frac{1}{R^2}.$	1	
Правильно проведены расчет и округление результата (до трёх		
значащих цифр, согласно данным из условия)		
$t^* = \left(250 - \frac{(250 - (-5,0)) \cdot 10,0^2}{15.0^2}\right) \circ C = 117 \circ C$.	1	
$t = \begin{pmatrix} 250 & 15,0^2 & 177 & 0.5 \end{pmatrix}$		
Всего за задачу:	10	Σ:
Задача 5. «Оптические гонки» (10 баллов)	10	
Правильно найдены расстояния (1) от жуков до тонкой линзы		
$d_A = 6a = 2F$		
$a_A = 6a = 2F$ $d_B = 4a = \frac{4}{3}F$		
Рассмотрено смещение жуков за малый		
промежуток времени Δt , правильно		
построены соответствующие	1+1	
изображения.	1 . 1	
Vyapaya (1) yma ayan amy yra 5 rawaya ar yra 4		
Указано, (4) что скорость изображения жука A	2	
$v_A=v=10$ cm/c.	2	
11 ~ (5)		
Найдено из построения (5), что	2	
B'D'=3BD.		
Правильно получено (6) для скорости изображения		
$v_B = \Gamma \cdot v_A = 3 \cdot v_A = 30 \text{ cm/c}$		
	10	
Всего за задачу:		Σ:
Суммарный балл за все задачи:	50	Σ: