Районная олимпиада 2022 г. Экспериментальный тур. 10 класс. Решение

1. Теоретическая часть эксперимента

1.1. Пружина лёгкая, поэтому её массой можно пренебречь. Тогда на груз действуют две силы, сила тяжести и сила упругости. По второму закону Ньютона векторная сумма, а следовательно, и сумма проекций этих сил на вертикальную ось, равна нулю

$$k\Delta l - mg = 0$$
.

Здесь $\Delta l = l - l_0$.

Тогда

$$k = \frac{mg}{l - l_0} \quad (1).$$

1.2. Коэффициент жёсткости двух последовательно соединённых пружин равен отношению силы упругости, действующей со стороны пружин в ответ на действие внешней силы, на растяжение пружин

$$k = \frac{F}{\Delta l}.$$

Растяжение пружин при последовательном соединении будет равно сумме растяжений каждой пружины

$$\Delta l = \Delta l_1 + \Delta l_2.$$

По третьему закону Ньютона, так как пружины лёгкие, внешняя сила, действующая на обе пружины, равно силе, действующей на каждую пружину. Тогда

$$\Delta l_1 = \frac{F}{k_1}; \quad \Delta l_2 = \frac{F}{k_2}.$$

Таким образом

$$k = \frac{F}{\Delta l_1 + \Delta l_2} = \frac{F}{\frac{F}{k_1} + \frac{F}{k_2}} = \frac{k_1 \cdot k_2}{k_1 + k_2}$$
 (2).

2. Экспериментальная часть с одной пружиной

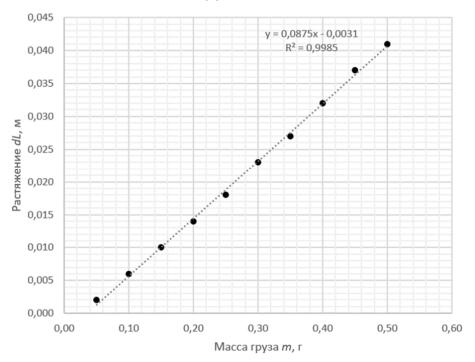

2.1. Результаты измерений для пружин № 1 и № 2 приведены в таблице 1. Данные, полученные учащимися, могут отличаться от указанных, так как характеристики одинаковых пружин не всегда одинаковые.

Таблица 1.

к-во	Macca	Пружина № 1		Пружина № 2	
грузов	грузов m , кг	Длина l_1 , м	Удлинение Δl_1 , м	Длина l_2 , м	Удлинение Δl_1 , м
0	0,00	0,049	-	0,048	-
1	0,05	0,051	0,002	0,049	0,001
2	0,10	0,055	0,006	0,051	0,003
3	0,15	0,059	0,010	0,052	0,004
4	0,20	0,063	0,014	0,054	0,006
5	0,25	0,067	0,018	0,056	0,008
6	0,30	0,072	0,023	0,057	0,009
7	0,35	0,076	0,027	0,059	0,011
8	0,40	0,081	0,032	0,060	0,012
9	0,45	0,086	0,037	0,062	0,014
10	0,50	0,090	0,041	0,063	0,015

График зависимости $\Delta l(m)$ приведён на рисунке.

Пружина 1

2.2. Получим выражение для углового коэффициента графика $\Delta l(m)$

$$a = \frac{\Delta l}{m}.$$

Из формулы (1)

$$k = \frac{mg}{l - l_0} \rightarrow \Delta l = \frac{mg}{k}.$$

Тогда

$$a = \frac{mg}{mk} = \frac{g}{k} \to k = \frac{g}{a}$$
.

Угловой коэффициент, рассчитанный методом наименьших квадратов (МНК), для приведённых в таблице значений

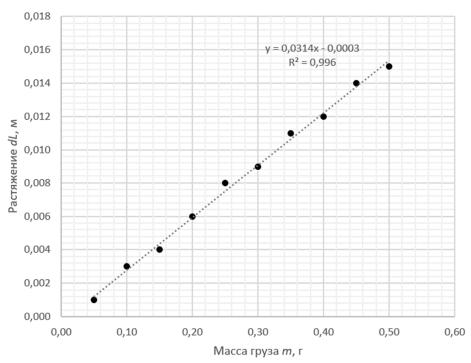
$$a_1 = 0.08752 \frac{M}{K\Gamma}$$

Тогда

$$k_1 = \frac{9,81 \frac{M}{C^2}}{0,08752 \frac{M}{K\Gamma}} = 112,09 \frac{K\Gamma}{C^2} = 112,09 \frac{H}{M}.$$

Основной вклад в погрешность вносит угловой коэффициент. Рассчитанная МНК его погрешность

$$\Delta a_1 = 0.00119 \frac{M}{K\Gamma}; \quad \varepsilon_{a_1} = \frac{\Delta a_1}{a_1} = 0.01364.$$


$$\varepsilon_{k_1} = \varepsilon_{a_1} = 0.01364; \quad \Delta k_1 = \varepsilon_{k_1} \cdot k_1 = 0.01364 \cdot 112,09 \frac{H}{M} = 1.529 \frac{H}{M} = 1.5 \frac{H}{M}.$$

Итоговый результат

$$k_1 = (112,1 \pm 1,5) \frac{H}{M}$$

2.3. График зависимости $\Delta l(m)$ приведён на рисунке.

Угловой коэффициент, рассчитанный методом наименьших квадратов (МНК), для приведённых в таблице значений

$$a_2 = 0.03139 \frac{M}{K\Gamma}$$

Тогда

10170

 $^{^{1}}$ Угловой коэффициент также можно определить ко графику, как это предлагается в школьных лабораторных работах.

$$k_2 = \frac{9,81 \frac{M}{C^2}}{0,03139 \frac{M}{KE}} = 312,52 \frac{H}{M}.$$

Рассчитанная МНК погрешность углового коэффициента

$$\Delta a_2 = 0,00037 \frac{M}{K\Gamma}; \quad \varepsilon_{a_2} = \frac{\Delta a_2}{a_2} = 0,02251.$$

$$\varepsilon_{k_2} = \varepsilon_{a_2} = 0,02251; \quad \Delta k_2 = \varepsilon_{k_2} \cdot k_2 = 0,02251 \cdot 312,52 \frac{H}{M} = 7,035 \frac{H}{M} = 7 \frac{H}{M}.$$

Итоговый результат

$$k_2 = (312 \pm 7) \frac{H}{M}$$

3. Экспериментальная часть с двумя последовательными пружинами

3.1. Результаты измерений для пружин № 1 и № 2, соединённых последовательно, приведены в таблице 2. Данные, полученные учащимися, могут отличаться от указанных.

Таблица 2.

к-во	Macca	Пружины № 1 и 2 (посл. соединение)		
грузов	грузов m , кг	Длина $\it l$, м	Удлинение Δl , м	
0	0,00	0,121	-	
1	0,05	0,124	0,003	
2	0,10	0,130	0,009	
3	0,15	0,136	0,015	
4	0,20	0,142	0,021	
5	0,25	0,148	0,027	
6	0,30	0,155	0,034	
7	0,35	0,161	0,040	
8	0,40	0,166	0,045	
9	0,45	0,172	0,051	
10	0,50	0,177	0,056	

График зависимости $\Delta l(m)$ приведён на рисунке.

0,050 0,040 0,030 0,020 y = 0,1194x - 0,0027 R² = 0,999 ... 0,030

Пружина 1+2 последовательно

3.2. Угловой коэффициент, рассчитанный методом наименьших квадратов (МНК), для приведённых в таблице значений

0,30

Масса груза т, г

0,40

0,50

0,60

0,20

$$a_{12} = 0.11939 \frac{M}{K\Gamma}$$

Тогда

$$k_{12} = \frac{9,81 \frac{M}{c^2}}{0,11939 \frac{M}{K\Gamma}} = 82,168 \frac{H}{M}.$$

Рассчитанная МНК погрешность углового коэффициента

0,10

$$\Delta a_{12} = 0.001308 \frac{M}{K\Gamma}; \quad \varepsilon_{a_{12}} = \frac{\Delta a_{12}}{a_{12}} = 0.01096.$$

$$\varepsilon_{k_{12}} = \varepsilon_{a_{12}} = 0.01096; \quad \Delta k_{12} = \varepsilon_{k_{12}} \cdot k_{12} = 0.01096 \cdot 82,168 \frac{H}{M} = 0.9006 \frac{H}{M} = 0.9 \frac{H}{M}.$$

Итоговый результат

0,010

0,000

0,00

$$k_{12} = (82.2 \pm 0.9) \frac{\text{H}}{\text{M}}$$

3.3.

$$k = \frac{k_1 \cdot k_2}{k_1 + k_2} = \frac{112 \frac{H}{M} \cdot 312 \frac{H}{M}}{112 \frac{H}{M} + 312 \frac{H}{M}} = 82,4 \frac{H}{M}.$$

Вывод. Теоретически рассчитанное значение коэффициента жёсткости двух пружин, соединённых последовательно, попадает в интервал значений, полученных экспериментально.