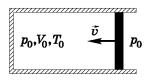

9.7. Внутренняя энергия идеального газа


- **9.7.1.** Определите внутреннюю энергию гелия массой m=1 кг при температуре $T=300~\mathrm{K}.$
- **9.7.2.** В вертикальном цилиндрическом сосуде площадью поперечного сечения $S=40~{\rm cm}^2$ на высоте $h=0.5~{\rm m}$ от основания находится поршень массой $m=1~{\rm kr}$, а под ним газ аргон. Чему равна внутренняя энергия этого газа?
- **9.7.3.** Идеальный одноатомный газ изотермически сжали из состояния с давлением $p_1=10^5~\Pi \mathrm{a}$ и объемом $V_1=2~\mathrm{n}$ до объема, втрое меньшего первоначального. Найдите внутреннюю энергию газа в конечном состоянии.
- **9.7.4.** Один моль гелия нагрели так, что его внутренняя энергия изменилась на $\Delta U = 600$ Дж. Во сколько раз изменилась температура гелия, если его начальная температура T = 400 К?
- **9.7.5.** Газ, находящийся при температуре t = 27 °C, нагрет на $\Delta t = 30$ °. На сколько процентов возросла его внутренняя энергия?
- **9.7.6.** В закрытом сосуде находится $\nu=3$ моль гелия при температуре t=27 °C. На сколько процентов увеличится давление в сосуде, если внутреннюю энергию газа увеличить на $\Delta U=3$ Дж?
- **9.7.7.** Аргон в количестве v=5 моль расширяется изобарно так, что его объем увеличивается в n=5 раз, а внутренняя энергия изменяется на $\Delta U=60$ кДж. Определите начальную температуру аргона.
- **9.7.8.** Идеальный газ сжимают поршнем и одновременно нагревают. Во сколько раз изменится его внутренняя энергия, если объем газа уменьшить в n=4 раза, а давление увеличить в k=3 раза?
- **9.7.9.** Один моль идеального одноатомного газа при температуре $T_1=290~\rm K$ расширяется изобарно до тех пор, пока его объем не увеличится в n=2 раза. Затем газ нагревают изохорно так, что его давление увеличивается в k=3 раза. Найдите изменение внутренней энергии газа.
- **9.7.10.** Аргон в количестве v=1 кмоль сжимают так, что его объем уменьшается в n=2 раза. Сжатие происходит по закону $pV^2={
 m const.}$ Найдите изменение внутренней энергии газа. Начальная температура газа $T_1=200~{
 m K}.$
- **9.7.11.** Гелий занимает объем V=2 л при давлении $p_1=2\cdot 10^5$ Па. Газ расширяется так, что его объем увеличивается в n=2 раза. Расширение происходит по закону $T=\alpha V^2$, где α положительная постоянная. Найдите изменение внутренней энергии гелия.
- 9.7.12. Идеальный одноатомный газ в количестве v=2 моль расширяется так, что его объем увеличивается в n=2 раза, при этом его внутренняя энергия уменьшается на $\Delta U=3,74$ кДж. Расширение происходит по закону $p=\alpha/V^2$, где α постоянная. Определите начальную температуру газа.

9.7.13. Зависит ли изменение внутренней энергии газа от способа его перевода из состояния I в состояние 2 (рис. 9.7.1)? Найдите изменение внутренней энергии при переходе из состояния I в состояние 2, если газ одноатомный; $p_0 = 10^5 \, \mathrm{Ta}$, $V_0 = 2 \, \mathrm{r}$.

 $egin{aligned} 2V_0 & V & \mathbf{9.7.14.} & \mathbf{H}$ айдите внутреннюю энергию $\mathbf{2V_0} & V & \mathbf{V} & \mathbf{V}$

- **9.7.15.** В сосуде находится гелий массой $m_1=10$ г и криптон массой $m_2=84$ г. Найдите изменение внутренней энергии смеси при ее нагревании на $\Delta T=40~{\rm K}$.
- **9.7.16.** Сосуд с аргоном движется прямолинейно со скоростью $v=50~\mathrm{m/c}$. На сколько возрастет температура газа, если сосуд остановить? Сосуд теплоизолирован. Теплоемкость сосуда не учитывать.
- **9.7.17.** Поршень массой m=3 кг закрывает с одного конца сосуд объемом $V_0=10$ л, в котором находится идеальный одноатомный газ при температуре $T_0=300~{\rm K}$ и давлении $p_0=10^5~{\rm \Pi a}$ (рис. 9.7.2). Поршню сообщают скорость $v=10~{\rm m/c}$. Найдите температуру газа при его максимальном сжатии. Система теплоизолирована. Теплоемкость поршня и сосуда не учитывать.
- 9.7.18. Закрытый с торцов горизонтальный теплоизолированный цилиндрический сосуд массой m перегорожен подвижным поршнем массой $M\gg m$. С обеих сторон от поршня находится по одному молю идеального одноатомного газа. Коротким ударом сосуду сообщают скорость v, направленную вдоль оси сосуда. Насколько изменится температура ΔT газа после затухания колебаний поршня? Трение между поршнем и стенками сосуда, а также теплоемкость поршня не учитывать. Масса газа $m_{\rm r} \ll m$.

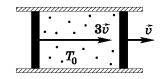


Рис. 9.7.2

Рис. 9.7.3

9.7.19. В длинной горизонтальной трубе между двумя одинаковыми поршнями массой m каждый находится один моль одноатомного газа (рис. 9.7.3). При температуре газа T_0 скорости поршней направлены в одну сторону и равны v и 3v. Какова максимальная температура газа? Труба теплоизолирована, массу газа и теплоемкость поршней не учитывать.

9.7.20. В длинной пустой горизонтальной теплоизолированной трубе находятся два поршня, массы которых $m_1 = 2 \, \text{кг}$ и $m_2 = 1 \, \text{кг}$. Между поршнями в объеме $V_0 = 18$ л при давлении $p_0 = 10^4$ Па находится одноатомный газ (рис. 9.7.4). Поршни отпускают. Оцените максимальные скорости поршней. Масса газа много меньше массы поршней.

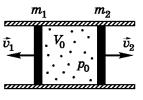


Рис. 9.7.4

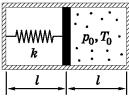


Рис. 9.7.5

9.7.21. В горизонтальном цилиндрическом теплоизолированном сосуде, площадь сечения которого S и длина 2l, удерживается тонкий поршень, делящий объем сосуда на две равные части. Одну половину занимает одноатомный газ при температуре T_0 и давлении p_0 , а в другой половине — вакуум. Пор-

шень соединен с торцом вакуумированной части сосуда пружиной жесткостью k и длиной в недеформированном состоянии 2l (рис. 9.7.5). Пренебрегая трением, найдите установившуюся температуру газа после того, как поршень отпустили.

• 9.7.22. В сосуде объемом V_1 находится одноатомный газ при температуре T_1 и давлении p_1 , а в сосуде объемом V_2 — такой же газ при температуре T_2 и давлении p_2 . Сосуды соединяют. Какое давление и какая температура установятся в сосудах? Теплообмен со стенками сосуда не учитывать.

9.7.11.
$$\Delta U = \frac{3}{2} \frac{m}{M} RT = 9,34 \cdot 10^5 \, \text{Дж.}$$

9.7.12. 9.7.14. $U = \frac{3}{2} (p_0 S + mg)h = 307,35 \, \text{Дж.}$ 9.7.14. $U = \frac{3}{2} (p_0 S + mg)h = 307,35 \, \text{Дж.}$ 9.7.14. $U = \frac{3}{2} \left(\frac{m_1}{M_1} + \frac{m_2}{M_2} \right) RT \approx 22,7 \, \text{кДж.}$ 9.7.15 $\Delta U = \frac{3}{2} \left(\frac{m_1}{M_1} + \frac{m_2}{M_2} \right) R\Delta T \approx 1,74 \, \text{кДж.}$ 9.7.15 $\Delta U = \frac{3}{2} \left(\frac{m_1}{M_1} + \frac{m_2}{M_2} \right) R\Delta T \approx 1,74 \, \text{кДж.}$ 9.7.16. $\Delta T = \frac{M v^2}{3R} = 4 \, \text{K.}$ 9.7.17. $T = \frac{2\Delta U}{3\sqrt{R}(n-1)} = 241 \, \text{K.}$ 9.7.19. $T = T_0 \left(1 + \frac{m v^2}{3R} \right) = 330 \, \text{K.}$ 9.7.10. $\Delta U = \frac{3}{2} \sqrt{R} (kn-1)T_1 \approx 103.9 \, \text{Дж.}$ 9.7.20. $v_1 = \sqrt{\frac{3p_0 V_0 m_2}{m_1 (m_1 + m_2)}} = 300 \, \text{m/c};$ 9.7.10. $\Delta U = \frac{3}{2} \sqrt{R} T_1 \left(\frac{V_1}{V_2} - 1 \right) \approx 2.5 \, \text{MJm.}$ 9.7.21. $T = T_0 \frac{3p_0 V_0 m_1}{4p_0 S} = 600 \, \text{m/c}.$